
I AD-A168 538 ArINj O# 4IfIIAI /

NLT6.UNCLASSIFIED AFO19--u " pN T3! t8jpf-I3-I2 l HE.

1 1 1 11111 2 2

3 2O

- ' Implementation Techniques

for

__ Main Memory Database Systems

by

iDavid J. DeWitt, Randy H. Katz,
Frank Olken, Leonard D. Shapiro,
Michael R. Stonebraker and David Wood

Memorandum No. UCB/ERL 84/5

23 January 1984

J"

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley, CA 94720

SEC~'~ .AS5C.' ~NOF >-S FAG]E

REPORT DOCUMENTATION PAGE

rREPOR' Stc-R'>I ;,ASSIF CAITON in F-TWC1 E MARK NG's

N' .ASSIF LED ________________________

2. ECR C~-SSFA T AU~THORI TYr 3 0 STRIBTI ON AVAI LABILITY 'OF REPORT

A\'K,1 ED FV H Rhl ELEASE;
20 EX.ASS.FICATION DOWVNGRADING SCHEDULE ILlS IR 11301 N OTLIMI IED

4 OEF OFRMING ORGANIZATION REPORT NUMBEFIS) 5 MONITORING ORGANIZATION REPORT NUMSERtS)

PtOil ER.. 84/'5 AFOSR -TR- * '
6a NAME OF PERFORMING ORGANIZATION [0 O:FFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

El ect roiis Research Lab. AFOSR /NM

6c ADDRESS C- State and ZIP Co el 7b ADDRESS (Crty- .5 ra d /1IP Cd-

I lkge cf Eng 1ineer ing B-jilId ing 1410
!hivers ity of Californ ia io IlIing .AFB, DC; 20)12

Berkelev, CA 44720

U, NAME OF FUNDING/SPONSORING 11b OFFICE SYMBOL 9 PROCUREMENT INSTRUMIENT OENPS~ 0N MB

ORGANIZATION dt appir-Oble ("I -, MBE

SC ADDRESS Crt) .State and ZIP Cyda, 10 SOURCE OF FUNDING NOS

Bul itd i ng 4 10 PROGRAM T -'R.IEC1T 'ASK AORK UNIT

BligABDC232ELEMENT NO NO NO NO

Boiling~~ 1EB 102 203 ' ~
I I TITLE tnide Secra'ry C(71-fication,

IMPLEMENTATION TECHNIQUES FOR MAIN MEMORY LAABASE S;Y S T IMS /2
12 PERSONAL AUTHORISI

DIAVID .1. DEWITT, RANDY H. KATZ, FRANK IhLKAEN, LEONARD 1). SHAPIRO, MICHAEL R. SI NEI'RAFER

13. TYPE OF REPORT 130. TIME COVERED 1 DATE OP REPORT 1Y 'lon, 1 51 PAGE COUNT

INTERIM FO______TO ___ 4_ 23 Jan 834
16 SUPPLEMENTARY NOTATION

1? COSATI CODES IS SUBJECT TERMS Ii r~~o ep-r n*rsosand denWf b, Shod. -r.,b-o

FIELD GROUP SUB OR Main Memory Datdbases, Acies-, Methods, *iiI Aig,%rttlI55.

Access Plan ning, Recovery Mechanisms

19. ABSTRACT Conrlr.., an neve- ncaar n dent, bf bj 51c- b-r

With the availability of very large, relatively inexpensive main memorie,, it.i

beLoming possible to keep large databases resident in main menory. In this paper %we

'Onsider the changes necessary to permit a relational database system to tarke adveroT ige

of large a1mounts Of Main memorv. We evaluate AVI. vs. Br- tree access methods Vt, muii:

memorv databases, hash-based quIery processing strategies vs. sort-merge, and stcl

re)very issues when most or all of the database tits inl main memory. As expe. ted. 83-

trees are the preferred storage mechanism unless more than 80-907, of the database- fit~,

in main memory. A somewhat surprising result is that hassh based query processing

strategies are advantageous for large memory situations

20 DrSTRISrJTIONAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CL.ASSIFICATION

UNCLASSrPIEDUNLIMITED 5j SAME AS ROT Z~ OTIC USERS UNCLASSIFIED

22. NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE n4UMBER 7 2c OFFINW'MBOL

(CAPT. THOMAS 1(202) 7 7-5f027 NM

DO FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE Un Scyne -'n

b rc 6 6 33 SEITY CLASSIFI(CATION OF TFIIS PAGE

Implementation Techniques
for

Main Memory Database Systems

David J. DeWittI

Randy H. Katj
Frank Olken

Leonard D. Shapiro
4 o

Michael R. Stonebfaker'
David Wood-

1 Computer Sciences Department, University of Wisconsin
2 EECS Department, University of California at Berkeley

3 CSAM Department, Lawrence Berkeley Laboratory
4 Department of Computer Science, North Dakota State University

This research was partially supported by the National Science Foundation under grants MCS82-01860,
MCS82-01870, by the Department of Energy under contracts #D_-AC02.81ERI0920 and #W-7405-

ENG-48, and by the Air Force Office of Scientific Research under Grant 8$00t -

ABSTRACT

With the availability of very large, relatively inexpensive main memories, it is becoming possi-
ble keep large databases resident in main memory. In this paper we consider the changes necessary to
permit a relational database system to take advantage of large amounts of main memory. We evaluate
AVL vs. B+ -tree access methods for main memory databases, hash-based query processing strategies vs.
sort-merge, and study recovery issues when most or all of the database fits in main memory. As expected,
B+ -trees are the preferred storage mechanism unless more than 80-90% of the database fits in main
memory. A somewhat surprising result is that hash based query processing strategies are advantageous
for large memory situations.

Key Words and Phrases: Main Memory Databases, Access Methods, Join Algorithms, Access Planning,
Recovery Mechanisms

1. Introduction

Throughout the past decade main memory prices have plummetted and are expected to con-

tinue to do so. At the present time, memory fo, super-minicomputers such as the VAX 11/780 costs

approximately $1,500 a megabyte. By 19Wg, I megabit memory chips will be commonplace and should

further reduce prices by another order of magnitude. Thus, in 190 a gigabyte of memory should cost less

than $200,000. If 4 megabit memory chips are available, the price might be as low as $50,000.

With the availability of larger amounts of main memory, it becomes possible to contemplate

the storage of databases as main memory objects. In fact, IMS Fast Path [DATE821 has supported such

databases for some time. In this paper we consider the changes that might be needed to a relational data-

base system if most (or all) of a relation(s) is (are) resident in main memory.

In Section 2, the performance of alternative access methods for main memory database sys-

tems are considered. Algorithms for relational database operators in this environment are presented and

evaluated in Section 3. In Section 4, we describe how access planning will be affected by the availability

of large amounts of main memory for query processing. Section 5 discusses recovery in memory resident

databases. Our conclusions and suggestions for future research are contained in Section 6.

2. Access Methods for Memory Resident Databases

The standard access method for data on disk is the B+-tree [COME79], providing both ran-

do-n and sequential key access. A B+ -tree is specially designed to provide fast access to disk-resident

data and makes fundamental use of the page size of the device. On the other band, if a keyed relation is

known to reside in main memory, then an AVL (or other binary) tree organization may be a better choice.

In this section we analyze the performance of both structure for a relation R with the following charac-

teristics:

I1RI) number of tuples in relation R
K width of the key for R in bytes
L width of a tuple in bytes

P page size in bytes
4 size of a pointer in bytes

We have analyzed two cases of interest. The first is the cost of retrieving a single tuple using a

random key value. An example of this type of query is:

2

retrieve (emp.salary) where emp.uame = "Jones"

The second case analyzed is the cost of feading N records sequentially. Consider the query

retrieve (emp.salary, emp.name) where emp.name - 'J*"

which requests data on all employees whose names begin with J. To execute this query, the database sys-

tem would locate the first employee with a name beginning with J and then read sequentially. This

second case analyzes the sequential access portion of such a command.

For both cases (random and sequential access), there are two costs that are specific to the

access method:

Ipage readsl the number of pages read to execute the query

Icomparisons the number of record comparisons required to
isolate the particular data of interest.

The number of comparisons is indicative of the CPU time required to process the command while the

number of page reads approximates the I/O costs.

To compare the performance AVL and B+ -trees, we propose the following cost function:

cost = Z * (page-reads + (comparisons

Since a page read consumes perhaps 2000 instructions of operating system overhead and 30 milliseconds of

elapsed time while a comparison can easily be done in 200, we expect realistic values of Z to be in the

rauge of 10 to 30. Later in the section we will use several values in this range.

Moreover, it is possible (although not very likely) that an AVL-tree comparison will be cheaper

than a B+ -tree comparison. The reasoning is that the B+ -tree record must be located within a page

while an AVL tree does not contain any page structure and records can be directly located. Conse-

quently, we assume that an AVL-tree comparison costs Y times a B+ -tree comparison for some Y < 1.

From Knuth [KNUT73), we can observe that in an ()R(-tuple AVL tree approximately

C - log 21RIJ + 0.25 comparisons

are required to find a tuple in a relation. Without any special precautions each of the C nodes to be

inspected will be on a different page.' Hence, the number of pages accessed is approximately C. The

If a paged binary tree organisation is used instead, the fansot per node will be slightly worse than the B-tree Furthermore,

-- . = • • , i i || | | • • i | i | u -

3

AVL structure will occupy approximately

Here IX 1 denotes the smallest integer larger than X. If IMt pages of main memory aze available, and if

I M I < I S 1, and if a random replacement algorithm is used, the number of page faults to find a tuple in

a relation will be approximately:

faults * f-JLL)
S,

Consequently the cost of a random access by key is:

cost(AVL) Z*C*(I- L- + ysC

Next we derive the approximate cost for a random access to a tuple using a B+ -tree. Accord-

ig to YAO [YAO78I, B-tree nodes are approximately 69 percent full on the average. Hence, the fanout of

a B+ -tree is approximately

A 69 *P
K+4

The number of leaf nodes will be about

D = I data pages
.69 *P

The height of a S+ -tree index is thereby

[logD I

height = I
The number of comparisons required to locate a tuple with a particular value i,:

C ' = JiogflR1IJ

The number of pages which the tree consumes is about

S -- D+ + D D I I D + . D, ,,

I~ I 11+[T11]+ 11]+ l

To a first approximation S' is

S' =D A

A-i

Again the number of page faults is approximately

r)aged binary trees are not balanced and the worst case access time may be sienihcattly poorer than in the case of a B-tr"e

" AL

|7

4

faulth = (height+ 1) (1-* t

As a result the cost of a B+ -tree access by key is:

cosi(B+ -tree) = Z*(height+ 1)*(-)+ C

An AVL-Tree will be the preferred structure for case I if

DIFF = cost(B+ -tree) - cost(AVL-Tree) > 0

It we assume that C = C = og211,11 and rearrange the terms in the inequality, then an AVL-Tree will

be preferred if:

(1-Y)slog2jjRj] > Z'logjjRj*(1- I) - Z*(height+ I)*(1 --)
SSI

Note that if L > > 8 then S - 0.69 * S'. Define H = height + I. Some simplification yields:log2 lIRll

IMI> *(-H+ -1 I-H

S Z 1.45

Obviously, if IM I >S, then AVL trees are the prefered structure regardless of the values of H, Y, and Z.

In this situation, the entire AVL-Tree is resident in main memory and there are no disk accesses. Since

both data structures require the same number or comparisons and the AVL comparisons are cheapers.

then the AVL-Tree is guaranteed to have lower cost. If I MI<S then AVL trees will be preferred if the

value of ' is larger than the value of min(IMI/'S) shown as in Table I. As can be seen, essentially all
S

of a relation has to be resident in main memory before an AVL tree is the preferred structure. For rea-

Table I - Minimum Residency Factor For Random Access

Z Y H min (IMI/S)
10 .5 .1 .91
10 .5 .2 .87
10 .5 .3 82
10 .75 .1 .94
10 .75 .2 .90

10 .75 .3 .86
15 .75 .1 96
15 .75 .2 .91

15 .75 .3 .86

• • ~~ALn

5

sonable values of H, Y and Z, 3t least 80 percent and sometimes more than 90 percent of a relation must

be main memory resident.

We turn now to sequential access. For an AVL-Tree, the cost of reading N records sequen-

tially is N comparisons and N page reads, i.e.:

seq-cost(AVL) Y*N + N*Z*(I- I M-L)

On the other hand, N records in a B+-Tree will occupy

_- (N,'1(.38*P) data pages
L /(.69 P)

and consequently:

seq-coet(B+-Tree) - N + Q*Z*(l- IM

An AVL-Tree will be preferred if:

M_ > Zll-H 1+ (Y-t)

S Z*(I-H '/1.45)

where H ' = I. It appears that reasonable values for H' are similar to reasonable values for H hence,

N

Table I also applies to sequential access.

In both random and sequential access, a very high percentage of the tree must be in main

memory for an AVL-Tree to be competitive. Hence, it is likely to be a structure of limited general utility

and B+ -Trees will continue to remain the dominant access method for database management systems.

3. Algorithms for Relational Database Operations

3.1. Introduction

In this section we explore the performance of alternative algorithms for relational database

operations in an environment with very large amounts of main memory. Since many of the techniques

used for executing the relational join operator can also be used for other relational operators fe,g. aggre-

gate functions, cross product, and division), our evaluation efforts have concentrated on the join opera-

tion. However, at the end of the section, we discuss how our results extend to these other algorithms.

After introducing the notation used in our analysis, we present an analysis of the familiar

sort-merge !BLAS771 join algorithm using this notation. Next we analyze a multipass extension of the

simple hashing algorithm. The third algorithm described is an algorithm that has been proposed by the

Japanese 5th generation project IKITS831, and is called GRACe. In the first phase, the join of two large

relations is reduced to the join of several small sets of tuples. During the second phase, the tuple sets are

joined using a hardware sorter and a sort-merge algorithm. Finally, we present a new algorithm, called

the Hybrid algorithm. This algorithm is similar to the GRACE algorithm in that it partitions a join into

a set of smaller joins. However, during the second phase, hashing is used instead of sort merge.

In the following sections we develop cost formulas for each of the four algorithms and report

the result of analytic simulations of the four algorithms. Our results indicate that that the Hybrid algo-

ritbm is preferable to all others over a large range of parameter values.

3.2. Notation and Assumptions

Let R and S be the two relations to be joined. The number of pages in these two relations is

denoted]RI and ISI, respectively. The number of tuples in R and S are represented by IRII and I1SiI. The

number of pages of main memory available to perform the join operation is denoted as IMI. Given IMI

pages of main memory, (M}R, {M)s specify the number of tuples from R and S that can fit in main

memory at one time.

We have used the following parameters to characterize the performance of the computer sys-

tem used:

comp time to compare keys
hash time to hash a key
move time to move a tuple
swap time to swap two tuples
105E time to perform a sequential 10 operation
0

RAND time to execute a random 10 operation

To simplify our analysis we have made a number of assumptions. First, we have assumed that

I R I :I S . Next, several quantities need to be incremented by slight amounts to be accurate. For

example, a hash table or a sort structure to hold R requires somewhat more pages than I1, and finding a

key value in a hash table requires, on the average, somewhat more than one probe. We use 'F" to denote

any and all of these increments, so for example a hash table to hold R will require IRI*F pages. To sim-

plify cost calculations, we have assumed no overlap of CPU and 10 processing. We have also ignored the

IL , J1 I

7

cost of reading the relations initially and the cost of writing the result of the join to disk since these costs

are the same for each algorithm.

In any sorting or hashing algorithm, the implementor must make a decision as to whether the

sort structure or hash table will contain entire tuples or only Tuple IDs (TIDs) and perhaps keys. If only

TEDs or TID-key pairs are used, there is a significant space savings since fewer bytes need to be manipu-

lated. On the other hand, every time a pair of joined tuples is output, the original tuples must be

retrieved. Since these tuples will most likely reside on disk, the cost of the random accesses to retrieve

the tuples can exceed the savings of using TIDs if the join produces a large number of tuples. For-

tunately we can avoid making a choice as the decision affects our algorithms only in the values assigned

to certain parameters. For example, if only TID-key pairs are used then the parameter measuring the

time for a move will be smaller than if entire tuples are manipulated.

Three algorithms (Sort-merge, GRACE, and Hybrid hash) are much easier to describe if they

require at most two passes. Hence we assume the necessary condition VT ___ F < I MI . For example. if F

= 1.2. then IMI is only 1,000 pages (4 megabytes at 4K bytes/page), and ISI (and 1RI, since I R 1 1 S I

can be as large as 800,000 pages (3.2 gigabytes)!

3.3. Partitioning a Relation by Hash Values

If NMi < JR(*F, each of the hashing algorithms described in this paper requires that R and/or

S be partitioned into distinct subsets such that any two tuples which hash to the same value lie in the

same subset, One such partitioning is into the sets R, such that R. contains those tuples r for which h(ri

= x. We call such a partition compatible with h.

A general way to create a partition of R compatible with h is to partition the set of hash

values X that h can assume into subsets, say X, Y_ Then, for i = 1,..., n define R, to be all tuples r

such that h(r) is in Y,. In fact, every partition of R compatible with h can be derived in this general way,

beginning with a partition of the hash values. The power of this method is that if we partition both R and

S using the same h and the same partition of hash values, say into Rl,....R, and Si,...,S_, then the prob-

lem of joining R and S is reduced to the task of joining Ri with S1, R 2 with S, etc. IBABB79.

GOOD811

aI

In order for the hash table of each set of R tuples to fit in memory, I R, I 'F must be < I.M

This is not easily guaranteed. For example, how can one choose a partition of R, compatible with h, into

two sets of equal size? One might try trial and error! Begin by partitioning the set of hasb values into

two sets X, and X2 of equal size and then consider the sizes of the two corresponding sets of tuples R,

and R 2 . If the R-sets are not of equal size then one changes the X sets to compensate, check the new R-

sets again. etc. Despite the apparent difficulties of selecting the sets X 1, X 2, ... , there are two mitigating

circumstances. Suppose that the key distribution has a bounded density and that the hash function

effectively randomizes the keys. If the number of keys in each partition is large, then the central limit

theorem assures us that the relative variation in the number of keys (and hence the number of tuples) in

each partition will be small. Furthermore, if we err slightly we can always apply the hybrid hash Join

recursively, thereby adding an extra pass for the overflow tuples.

3.4. Sort-Merge Join Algorithm

The standard sort-merge algorithm begins by producing sorted runs of tuples which are on the

average twice as long as the number of tuples that can fit into a priority queue in memory [KNUT73:.

This requires one pass over each relation. During the second phase, the runs are merged using an n-way

merge, where n is as large as possible (since only one output page is needed for each run, n can be equal

to il-I) If n is less t-an the number of runs produced by the first phase, more than two phases will be

needed. Our assumptions guarantee that only two phases are needed.

The steps of the sort-merge join algorithm are:

11) Scan S and produce output runs using a selection tree or some other priority queue structure. Do the

same for R A typical run will be approximately 1 pages long [KNUT731. Since the runs of" F

R have an average length of 2 F pages, there are 2R I such runs. Similarly, there are
S F 2 * IAF

S 'F runs of S. Since S is the larger relation, the total number of runs is at most S I_
-2* W I IMI*

Therefore. all the runs can be merged at once if I M S I 1 , or I M 1 SI " -F, and we have

absumed Il1 to be at :east VJFTT pages. Thus all runs can be merged at once.

(2) Allocate one page of memory for buffer ;pace for each run of R and S. Merge runs from R and S

concurrently. When a tuple from R matches one from S, output the pair.

-he cost of this algorithm (ignoring the cost of reading the relations initially and the co6t of writing the

result of the join) is:

(11Rilog2 --- + 1iS 11log-2.--) ° (comp+ swap) Insert tuples into priority queue
to form initial runs

+ (I I + I s *)EQ write initial runs

+ oR I + SI)'IORAVD Reread initial runs

(11R111o2 lM}R/F + IIS I0l2 IMS/),. (comp+ swap) Insert tuples into priority queue

for inal merge

+ (I1R1I+ 1IS I) * comp Join results of final merge.

This cost formula holds only if a tuple from R does not join with more than a page of tuples from S.

3.5. Simple-Hash Join Algorithm

If a hash table containing all of R fits into memory, i.e. if I R I *F _ I M1, the simple-hash

join algorithm proceeds as follows: build a hash table for R in memory and then scan S, hashing each

tuple of S and checking for a match with R (to obtain reasonable performance the hash table for R should

contain at least TID-key pairs). If the hash table for R will not fit in memory, the simple-hash join algo-

rithm fills memory with a hash table for part of R, then scans S against that, hash table, then it continues

with another part of R, scans the remainder of S again, etc.

The steps of the simple-hash join algorithm are:

(1) Let P = min(IMf, IRI*F). Choose a hash function h and a range of hash values so that f. pages of
F

R-tuples will hash into that range. Scan the (smaller) relation R and consider each tuple. If the

tuple hashes into the chosen range, insert the tuple into a P-page hash table in memory. Otherwise.
write the tuple into a new file on disk.

(2) Scan the larger relation S and consider each tuple. If the tuple hashes into the chosen range, check
the hash table of R-tuples in memory for a match and output the pair if a match occurs. Otherwise.
write the tu le to disk. Note that if key values of the two relations are distributed similarly, there

will be - 'T
l pages of the larger relation S processed in this pass.

F [RI

6-m -| l i

10

(3) Repeat steps (1) and (2), replacing each of the relations R and S by the set of tuples from R and S
that were "passed over" and written to disk in the previous pass. The algorithm ends when no
tuples from R are passed over.

The~~~ ~ ~ aloihMeqie ' IF passes to execute. We denote this quantity by A. Also note that on
MMI

the ith pass, i - 1 ... , A-I, IIRII - * ---- tuples of R are passed over. The cost of the algorithm is:

IIR1 * (hash + move) Place each tuple of R in a hash table

+ (SII * (hash + compsF) Check a tuple of S for a match.

+ ((A-I) 11IRI - A*(A -1) A{ R * (hash+ move) Hash and move passed-over tuples in R.
2 F

+ ((A-),((S.I - A*(A.) l * (hash+ move) Hash and move passed-over tuples in S.
2

2 A*(A-I) #
F 2,O_ Write and read passed-over tuples in R.

+ (A-1) l 2
+ ((A -1)*151 AF(A-I) *M I I S 2 IOSEQ Write and read passed-over tuples in S2 F IR I sq

3.8. GRACF-Hash Join Algorithm

As outlined in [KITS83j, the GRACE-hash join algorithm executes as two phases. The first

phase begins by choosing an h and partitioning the set of hash values for h into IMI sets, corresponding to

a partition of R and S into IMI sets each, such that R is partitioned into sets of approximately equal size.

No assumptions are made about set sizes in the partition of S. The algorithm uses one page of main

memory as an output buffer for each of the iMI sets in the partition of R and S. During the second phase

of the algorithm, the join is performed using a hardware sorter to execute a sort-merge algorithm on each

pair of sets in the partition. To provide a fair comparison between the different algorithms, we have used

hashing to perform the join during the second phase. The algorithm proceeds as follows:

(1) Scan R. Using h, hash each tuple and place in the appropriate output buffer. When an output
buffer fills, it is written to disk. After R has been completely scanned, flush all output buffers to
disk.

(2) Scan S. Using h, hash each tuple and place in the appropriate output buffer. When an output
buffer fills, it is written to disk. After S has been completely scanned, flush all output buffers to
disk.

IL

11

Steps (3) and (4) below are repeated for each set R,, 1<i< I MI, in the partition for R. and its
corresponding set S,.

(3) Read R, into memory and build a hash table for it.

We pause to check that a hash table for R, can fit in memory. Assuming that all the sets R, are of
equal size, since there are IMI of them, I R, I will equal pagcs. The inequalit

I R, *F < I MI is equivalent to IT j :5 1 (MI, and we have assumed that 1(.j4F <I

(4) Hash each tuple of S, with the same hash function used to build the hash table in (3). Probe for a
match. If there is one, output the result tuple, otherwise proceed with then next tuple of 5,

The cost of this algorithm is:

(11R1 + (I(s5) * (hash + move) Hash tuple and move to output buffer

+ (1RI + ISI) 0
RAND Write partitioned relations to disk

+ (IR + ISI) 5 '
0

SPQ Read partitioned sets

+ (R11 * (hash + move) Build hash tables in memory

+ ((SI) * (hash + comp*F) Probe for a match

3.7. Hybrld-Hash Join Algorithm

In our hybrid-hash algorithm, we use the large main memory to minimize disk traffic. On the

first pass, instead or using all of memory as a buffer as is done in the GRACE algorithm, only as many

pages (B. defined below) as are necessary to partition R into sets that can fit in memory are used. The

rest of memory is used for a hash table that is processed at the same time that R and S are being parti-

tioned.

Let B = maz(O, IRI *F-IMI). There will be B+ I steps in the hybrid-hash algorithm.

First, choose a hash function b and partition R into Re, ,RB, such that a hash table for Re has

IM I -B pages, and R ,.,Be are of equal size.

Before describing the algorithm we first show that a hash table for R, will fit into memory.
~Assuming that all sets R, are of equal size, we denote (RI by p. We nust show that:

p*F< IM (a)

Since Re is chosen so that a hash table for it fits into I I -B pages of memory, we have:

Asuigta

l
esR

r
reulsze

ednt

jb ,W utso

|t

12

IRol F=IMI-B (b)

Since the sum of all the R,-sets is R, we have

IR I=B*p + I Rol (c)

If a hash table for all of R fits into memory, we can choose B = 0 and be done with it. So henceforth we

assume I M I < I R I *F. Thus, B- I R I *F-I M I If we solve (c) for p and substitute (b) in the result
IMI-i

we get:

p - IR.
I R

o' IR[11M 1-P (d)

B B B F*B

Now we multiply (d) by F and simplify to get:
pF_ I R I IF-IMI +1 (e)

B

Finally, we substitute for B in (e) to get (a), which was our goal. Thus we have demonstrated that a hash

table for R, fits into memory.

Now we continue with the algorithm. Allocate B pages of memory to output buffer space, and

assign the other *IM I -B pages of memory to a hash table for R0 . We pause again to check that there are

enough pages in memory to hold the output buffers, i.e. that B < I M I. If we substitute for B in the ine-

quality B I M I and simplify, we get I -T F : 1 M I, which is true since we have assumed that that

"I- S F < I M I .

The steps of the hybrid-hash ilgorithm are:

(1) Assign the ith output buffer page to R, for i=1,...,B. Scan R. Hash each tuple with h. If it
belongs to R0, place it in memory in the hash table for R0. Otherwise it belongs to R, for some
3>0. so move it to the ith output buffer page. When this step has finished, we have a hash table for
R in memory, and Rl,...,R5 are on disk. The partition of R corresponds to a partition of S compa-
tible with h, into sets So,...,S.

(2) Assign the ith output buffet page to S, for i. B. Scan S, hashing each tuple with h. If the
tuple is in So, probe the hash table in memory for a match. If there is a match, output the the
result tuple. If there is no match, toss the tuple. Otherwise, the hashed tuple belongs to S, for some
i>0, so move it to the ith output buffer page. Now R ,...,RB and Sl,...,SB are on disk.

Repeat steps (3) and (4) for i = 1.B.

(3) Read R, and build a hash table for it in memory. We have already shown that a hash table for it
will fit in memory.

9L

13

(4) Scan S,, hashing each tuple, and probing the hash table for R,, which is in memory, If there is a
match, output the result tuple, otherwise toss the S tuple.

I0
For the cost computation, denote by q the quotient -- 0, namely the fraction of R represented by RO.

To calculate the cost of this join we need to know the size of So, and we estimate it to be q*IS[. Then the

fraction of R and S sets remaining on the disk is I-q. The cost of the hybrid-hash join is:

(11R11 + iISI)*hash Partition R and S

+ (IIR1I+ IjSI)*(1-q)*move Move tuples to output buffers

" (IRI+ ISI)*(1-q)*IORAA, Write from output buffers

+ (1i111+ (IS(I)*(l-q)*hash Build hash tables for R and find where to probe for S

+ (ISI[*F*comp Probe for each tuple of S

+ IRj*move Move tuples to hash tables for R

+ (IRI+ ISI)*(1-q)*IOsEQ Read sets into memory

3.8. Compalison of the 4 Joln Algorithms

In Figure I we have displayed the relative performance of the four join algorithms. The verti-

cal axis is execution time in seconds. The horizontal axis is the ratio of I Note that above a ratio
I R I "

of 1.0 all algorithms have the same execution time as at 1.0, except that sort-merge will improve to

approximately 900 seconds, since fewer 10 operations are needed. The parameter settings used are shown

in Table 2. We have assumed that there are at least VT3SI*-F pages in memory. For the values specified

in Table 2, this corresponds to =Mi = 0.009.
IRI-F

In generating these graphs we have used the cost formulas given above with one exception.

The IORAND term used in the cost formula for hybrid hash should be replaced by IOsEQ in the case that

there is only one output buffer. There is only one output buffer whenever I M I > F (0.5 on the

horizontal axis of Figure 1). The abrupt discontinuity in the performance of the hybrid hash algorithm at

0.5 occurs because when memory space decreases slightly, changing the number of output buffers from one

to two, the 10 time is suddenly calculated as a multiple of IORAND instead of IOSEQ. Even when there

IL

14

Table 2 - Parameter Settings Used

comp time to compare keys 3 microseconds
hash time to hash a key 9 microseconds
move time to move a tuple 20 microseconds
swap time to swap two tuples 60 microseconds
1O sE sequential 10 operation time 10 milliseconds
'ORAND random 10 operation time 25 milliseconds
F universal "fudge" factor 1.2
ISf size of S relation 10,000 pages
IRI size of R relation 10,000 pages
IIRIf/IRI number of R tuples/page 40
IfSfl/fSI number of S tuples/page 40

are only two or three buffers, IORAND is probably too large a figure to use to measure 10 cost, but we

have not made that change. This is what causes our graphs to indicate that simple hash will outperform

hybrid hash in a small region; in practice hybrid hash will probably always outperform simple hash.

We have generated similar graphs for the range of parameter values shown in Table 3. For

each of these values we observed the same qualitative shape and relative positioning of the different algo-

rithms as shown in Figure 1. Thus our conclusions do not appear to depend on the particular parameter

values that we have chosen.

3.9. Algorithms for Other Relational Operations

While we have not analyzed algorithms for the remaining relational operations such as aggre-

gate function and projection with duplication elimination, we can offer the following observations. For

aggregate functions in which related tuples must be grouped together (compute average employee salary

Table 3 - Other Parameter Settings Testf.d

comp 1 to 10 microseconds
hash 2 to 50 microseconds
move 10 to 50 microseconds
swap 20 to 250 microseconds
1O'Q 5 to 10 milliseconds
IORAND 1S to 35 millisecond,
F 1.0 to 1.4
ISI 10,000 to 200,000 pages
(Rff 100,000 to 1,000,000 tuples

3 trI TO I SECONDS

4000

sDIPIz-HASH

3000

1 0 0 0G
R A C E - H

010 0.1 0.2 0.3 0.4 0. 5 0.8 0.7 0 .8 0.9 1.0

PERFMIMCE OF TME 4 JOBf ALGORITHUS

Figure 1

15

by manager), the result relation will contain one tuple per group. If there is enough memory to hold the

result relation, then the fastest algorithm will be a one pass hashing algorithm in which each incoming

tuple is hashed on the grouping attribute. If there is not enough memory to hold the result relation (prob-

ably a very unlikely event as who would ever want to read even a 4 million byte report) then a variant of

the hybrid-hash algorithm described for the join operator appears fastest. This same hybrid-hash algo-

rithm appears to be the algorithm of choice for the projection operator as projection with duplicate elimi-

nation is very similar in nature to the aggregate function operation (in projection we are grouping identi-

cal tuples while in an aggregate function operation we are grouping tuples with an identical partitioning

attribute).

4. Access Planning and Query Optimlaatlon

In the classic paper on access path selection by Selinger [SELI791, techniques are developed by

choosing the 'best" processing strategy for a query. 'Best" is defined to be the plan that minimizes the

function W*ICPU + 11/O where (CPU) is the amount of CPU time consumed by a plan, (I/O) is the

number of 1/0 operations required for a plan, and W is a weighting factor between CPU and 1/0

resources. Choosing a "best" plan involves enumerating all possible "interesting" orderings of the opera-

tors in query, all alternative algorithms for each operator, and all alternative access paths. The process is

complicated by the fact the order in which tuples are produced by an operator can have a significant

effect on the execution time of the subsequent operator in the query tree

The analysis presented in Section 3 indicates that algorithms based on hashing (the hybrid-

hash algorithm in the case of the join operator and the simple-hash algorithm to process projection and

aggregate function operators) are the fastest algorithms when a large amount of primary memory is avail-

able. Since the performance of these algorithms is not affected by the input order of the tuples and since

there is only one algorithm to choose from, query optimization is reduced to simply ordering the operators

so that the most selective operations are pushed towards the bottom of the query tree.

is

5. Recovery In Large Memory Databases

5.1. Introduction and Assumptions

High transaction processing rates can be obtained on a processor with a large amount of main

memory, since input/output delays can be significantly reduced by keeping the database resident in

memory. For example, if the entire database is resident in memory, a transaction would never need to

access data pages on disk.

However, keeping a large portion of the database in volatile memory presents some unique

challenges to the recovery subsystem. The in-memory version of the database may differ significantly

from its latest snapshot on disk. A simple recovery scheme would proceed by first reloading the snapshot

on disk, and then applying the transaction log to bring it up to date. Unless the recovery system does

more than simple logging during normal transaction processing, recovery times would become intolerably

locg using this approach.

Throughout this section, we will assume that the entire database fits in main memory. In such

an environment, we need only be concerned with log writes. A "typical" transaction writes 400 bytes of

log data J40 bytes for transaction begin/end, 30 bytes for old values/new values),
2

which takes 10 ms

(time to write one 4096 byte page without a disk seek). We also assume that a small portion of memory

can be made stable by providing it with a back-up battery power supply.

5.2. Limits to Transaction Throughput

In conventional logging schemes, a transaction cannot commit until its log commit record has

been written to stable storage. Most transactions have very simple application logic, and perform three to

four page reads and writes. While transactions no longer need to read or write data pages if the database

is memory resident, they still need to perform at least one log I/O. Assuming a single log device, the sys-

tem could commit at most 100 transactions per second (I second / 10 ms per commit = 100 committed

transactions per second). The time to write the log becomes the major bottleneck.

A scheme that amortizes this log I/O across several transactions is based on the notion of a

These are ballpark estimate:, bued on the example banking database and transactions ii Jim Gray, 'Notes on Database
Operating Systems." IBM RJ2188(30001), (February 23, 1578)

.~I -I || I

17

pre-committed transaction. When a transaction is ready to complete, the transaction management system

places its commit record in the log buffer. The transaction releases all locks without wiiting for the com-

mit record to be written to disk. The transaction is delayed from committing until its commit record actu-

ally appears on disk. The "user" is not notified that the transaction has committed until this event has

occurred.3

By releasing its locks before it commits, other transactions can read the pre-committed

transaction's dirty data. Call these dependent transactions. Reading uncommitted data in this way does

not lead to an inconsistent state as long as the pre-committed transaction actually commits before its

dependent transactions. A pre-committed transaction does not commit only if the system crashes, never

because of a user or system induced abort. As long as records are sequentially added to the log, and the

pages of the log buffer are written to disk in sequence, a pre-committed transaction will have its commit

record on disk before its dependent transactions.

The transactions with commit records on the same log page are committed as a group, and are

called the commit group. A single log 1/0 is incurred to commit all transactions within the group. The

size of a commit group depends on how many transactions can fit their logs within a unit of log write (i.e..

a log buffer page). Assuming the "typical" transaction, we could have up to ten transactions per commit

group. The transaction throughput can be increased by another order of magnitude, to 1000 transactions

per second (I second / 10 ms to commit 10 transactions = 1000 transactions committed per second).

The throughput can be further increased by writing more than'one log page at a time, by par-

titioning the log across several devices. Since more than one log 1/0 can be active simultaneously, the

recovery system must maintain a topological ordering among the log pager, so the commit record of a

dependent transaction is not written to disk before the commit record of its associated pre-committed

transaction. The roots of the topological lattice can be written to disk simultaneously.

To maintain the ordering, and thus the serialization of the transactions, the lock table of the

concurrency control component must be extended. Associated with each lock are three sets of transac-

tions: active transactions that currently hold the lock, transactions that are waiting to be granted the

3 T'e notion of groop commits appears to be part of the uswntite database folklore The Syrtem-R implementon claim to
have inplemented it To our knowledge, neither the idea nor the implementation detais has yet appeared in pnnt

. . I

lock, and pre-committed transactions that have released the lock but have not yet committed. When a

transaction is granted a lock, it becomes dependent on the pre-committed transactions that formerly held

the lock. The dependency list is maintained in the transaction's descriptor in the active transaction table.

When a transaction becomes pre-committed, it moves from the holding list to the pre-committed list for

all of its locks (we assume all locks are held until pre-commit), and the committed transactions in its

dependency list are removed. In becoming pre-committed, the transaction joins a commit group. The

commit groups of the remaining transactions in its dependency list are added to those on which its com-

mit group depends. A commit group cannot be written to disk, and thus commit, until all the groups it

depends on have previously been committed.

For recovery processing, a single log is recreated by merging the log fragments, as in a sort-

merge. For example, to roll backwards through the log, the most recent log page in each fragment is

examined. The page with the most recent timestamp is processed first, it is replaced by the next page in

that fragment, and the most recent log page of the group is again determined. By a careful buffering stra-

tegy, the reading of log pages from different fragments can be overlapped, thus reducing recovery time.

5.3. Checkpolnting the Databasae

An approach for reducing recovery time is to periodically checkpoint the database to stable

storage [GRAYSII. Checkpointing limits recovery activities to those transactions that are active at the

checkpoint or who have begun since the last checkpoint. System-R, for example, takes an action con-

sistent checkpoint, during which no storage system operations may be in progress (a transaction consists

of several such actions, which correspond roughly to logical reads and writes of the database). Dirty

buffer pool pages are forced to disk. Since the database is assumed to be large, a large number of dirty

pages will need to be written to disk, making the database unavailable for an intolerably long amount of

time. Consider the case of 1000 transactions per second, two dirty pages per transaction, and 30 seconds

between checkpoints. In the worst case, 60,000 pages would need to be written at the checkpoint.

We would like to overlap checkpoint with transaction activity. Let A,,, be the set of pages

that have been updated since the last checkpoint. Once a checkpoint begins, transaction activity can con-

tinue if updates to pages of A_= cause new in-memory versions to be created, leaving the old versions

ig

available to be written to disk. A checkpointed, action consistent state of the database is always main-

tamed on disk. At a checkpoint, a portion of the state is replaced by A_,. To guarantee that the state

is updated 'carefully," we use a batch update approach by first writing these pages to stable storage. WVe

denote the batch update file by Ad,,t. If the system crashes while the disk state is being overwritten from

memory, it can be reconstructed from the pages in A

The algorithm proceeds in two phases. In phase 1, A,_ is written to Ad,. During phase 2,

the pages in A_ are copied to their original locations on disk For the algorithm to work. we must

assume:

(I) Extra disk space is availabie to hold A,,.

(2) Extra memory space is available to hold Ae,.

(3) No dirty page is ever written to disk except during a checkpoint.

Time stamps are used to determine membership in A,_,. The timestamp Tr indicates when

the current checkpoint began, or is zero if no checkpoint is in progress. When a transaction attempts to

update a page. the page's timestamp Tpg9 is compared to T. If Tj, < T, and the page is dirty, a

new version of the page is created and the in-core page table points to the new page. The update is

applied to the new page. The page's timestamp is updated to reflect the latest modification.

To obtain an action consistent state for the checkpoint, the system is initially quiesced. T , is

5et to the cirrent time clock to indicate that a checkpoint has begun. The active transaction list is con-

structed for later inclusion in the log. Transaction activity can now resume, since the old versions in

AN,, can no longer be updated Memory pages who are dirty and for which T,, < T., are written to

" ,,, After As,,, has been created, a begin checkpoint record is written to the log with TL.r and the list of

active transactions, indicating that phase I of checkpoint is complete. The pages of A, ars then writ-

ten to their original locations on disk, making the disk state identical to the in-memory state as of T,

An end checkpoint record is written to the log to indicate the completion of phase 2, AI, 1 is removed, and

T-, is reset.

The advantage of the algorithm is that checkpointing can V'. done in parallel with transactin

activity while maintaining an action consistent state on disk. This is particularly needed in a high update

20

transaction environment, which can generate a large number of updated pages betwe'.o rheckpoint

Further, as soon as a checkpoint completes, another can commence with onlv a negligible interruption of

service Checkpointing proceeds at the maximum rate possible, i.e., as fast as pages can be written t,

disk, thus keeping the log processing time to a minimum during recovery.

5.4. Reducing Log Shi

While checkpointing will reduce the time to process the log, by reducing the necessary redo

activity it does not help reduce the log size. The large amount of real memory available to us rca be

used to reduce the log size, if we assume that a portion of memory can be made stable against system

power failures. For example, batteries can be used as a back-up power supply for low power CMOS

memory chips. We further assume that such memory is too expensive to be used for all of real memory

Partition real memory into a stable portion and a conventional, non-stable portion. The stable

portion will be used to hold an in-memory log, which can be viewed as a reliable disk output queue for log

data. Transactions commit as soon as the:, write their commit records into the in-memory log. Log data

is written to disk as soon as a log buffer page fills up. Given the buffering of the log in memory. it may h-

more efficient to write the log a track at a time. In addition, multiple log writes can be directed to

different log devices without the need for the bookkeeping described above. However, in the steady state.

the number of transactions processed per second is still limited by how fast we can empty buffer pages by

writing them to disk-based stable storage.

Stable memory does not seem to gain much over the group commit mechanism. However. the

log can be significantly compressed while it is buffered in stable memory. The log entries for "1 particular

transaction are of the form

Begin Transaction
<Old Value, New Value>

<Old Value, New Value>
End Transaction

A transaction's space in the log can be significantly reduced if only new values are written to the disk

based log (approximately half of the size of the log stores the old values of modified data - this is only

needed if the transaction must be undone). This is advantageous for space management, and also reduces

21

the recovery time by shortening the log.

In the conventional approach, log entries for all transactions are intermiyed in the log. The

log manager maintains a list of committed transactions, and removes their old value entries from log

pages before writing them to disk A transaction i5 removed from the list as soon as its commit record

has been written to disk. A more space efficient alternative is to maintain the log on a per transaction

basis in the stable memory. If enough space can be set aside to accommodate the logs of all active tran-

sactions, then only new values of committed transactions are ever written to disk.

Stable memory also assists in reducing the recovery time. To recover committed updates to

pages since the last checkpoint, the recovery system needs to find the log entry of the oldest update that

refers to at uncheckpointed page. A table can be placed in stable memory to record which pages have

been updated since their last checkpoint, and the log record id of the first operation that updated the

page. When a page is checkpointed to disk, its update status is reset. The log record id of the next

update on the page is entered into the table. The oldest entry in the table determines the point in the log

from which recovery should commence.

6. Conclusions and Future Research

In this paper we have examined changes to the organization of relational database manage-

ment systems to permit effective utilization of very large main memories. We have shown that the B+ -

tree access method will remain the preferred access method for keyed -wcess to tuples in a relation unless

more tha, 801c - 90% of the database can be kept in main memory. We have also evaluated alternative

algorithms for complex relational operators. We have shown that once the size of main memory exceeds

the square root of the size of the relations being processed, that the fastest algorithms for the join, projec-

tion, and aggregate operators are based on a hashing, It is interesting to note that this result also holds

for "small" main memories and "small' databases. Finally, we have discussed recovery techniques for

memory-resident databases.

There appear to be a number of promising areas for future research. These include buffer

management strategies (how to efficiently manage very large buffer pools), the effect of virtual memory on

query processing algorithms, and concurrency control. While locking is generally accepted to the algo-

22

rithm of choice for disk resident databases, a versioning mechanism REEDS31 may provide superior per-

formance for memory resident systems.

23

7. References

[BABB791 Babb, E. "Implementing a Relational Database by Means of Specialized Hardware," ACM
TODS, Vol. 4, No. 1, March 1979.

IBLAS77] Blasgen, M.W. and K.P. Eswaran, "Storage and Access in Relational Databases," IBM Systems
Journal, Vol. 16, No. 4, 1977.

ICESA821 Cesarini, F. and G. Soda, "Binary Trees Paging", Information Systems, Vol. 7, No. 4, pp 337-
344, 1982.

ICOME791 Comer, D., "The Ubiquitous B-tree," ACM Computing Surveys, Vol. 11, No. 2, June 1079.

[DATE821 Date, C.J., "An Introduction to Database Systems," Third Edition, Addison-Wesley, 1982.

IGOOD811 Goodman, J. R., "An Investigation of Multiprocessor Structures and Algorithms for D3ta Base
Management," Electronics Research Laboratory Memorandum No. UJCB/ERL M81/33, University of
California, Berkeley, May 1981.

IGRAY811 Gray, J., et. al., "The Recovery Manager of the System R Database Manager,* ACM Comput-
ing Surveys, Vol. 13, No. 2, June 1981.

[KNUT731 Knuth, D., "The Art of Computer Programming: Sorting and Searching," Volume Il,
Addison-Wesley, Reading, MA, 1973.

[KITS831 Kitsuregawa, M. et al, "Application of Hasb to Data Base Machine and its Architecture", New
Generation Computing, No. 1, 1983, 62-74.

[MUNT701 Muntz, R. and R. Uzgalis, "Dynamic Storage Allocation for Binary Search Trees in a Two-
Level Memory," Proceedings of the Princeton Conference on Information Sciences and Systems, No.
4, pp. 345-349, 1970.

IREED831 Reed, D., "Implementing Atomic Actions on Decentralized Data," ACM Transactions on Com-
puter Systems, V 1, N 1, (March 1983),

[SELf791 Selinger, P.G., et. al., "Access Path Selection in a Relational DBMS,' Proceedings of the 1979
SIGMOD Conference on the Management of Data, June 1979.

IYA0781 Yao, S. B., and D. DeJong, "Evaluation of Database Access Paths," Proceedings of the 1978
SIGMOD Conference on the Management of Data, May 1978.

,,., .. . i i I U I I

ATE

..]ILME

